Amanote Research

Amanote Research

    RegisterSign In

Bootstrapping Cluster Analysis: Assessing the Reliability of Conclusions From Microarray Experiments

Proceedings of the National Academy of Sciences of the United States of America - United States
doi 10.1073/pnas.161273698
Full Text
Open PDF
Abstract

Available in full text

Categories
Multidisciplinary
Date

July 24, 2001

Authors
M. K. KerrG. A. Churchill
Publisher

Proceedings of the National Academy of Sciences


Related search

Spatial Analysis of cDNA Microarray Experiments

Crop Science
AgronomyCrop Science
2005English

Selecting Differentially Expressed Genes From Microarray Experiments

Biometrics
StatisticsGeneticsProbabilityMolecular BiologyBiochemistryApplied MathematicsMicrobiology ImmunologyBiological SciencesMedicineAgricultural
2003English

Effective Feature Selection Framework for Cluster Analysis of Microarray Data

Bioinformation
2010English

Outcome-Driven Cluster Analysis With Application to Microarray Data

PLoS ONE
Multidisciplinary
2015English

Assessing Individual Change Without Knowing the Test Properties: Item Bootstrapping

Frontiers in Psychology
Psychology
2018English

Spatial Sampling, Coherent Noise, and Subsurface Resolution: Conclusions From Field Experiments

2012English

Assessing the Reliability Function of Nanocomponents

Journal of Applied Probability
MathematicsStatisticsUncertaintyProbability
2011English

Microarray Analysis Using the MicroArray Explorer

The Analysis of Gene Expression Data
2003English

Assessing the Safety and Reliability of Autonomous Vehicles From Road Testing

2019English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy