Amanote Research

Amanote Research

    RegisterSign In

The Johnson-Lindenstrauss Lemma Almost Characterizes Hilbert Space, but Not Quite

doi 10.1137/1.9781611973068.96
Full Text
Open PDF
Abstract

Available in full text

Date

January 4, 2009

Authors
William B. JohnsonAssaf Naor
Publisher

Society for Industrial and Applied Mathematics


Related search

Almost Optimal Explicit Johnson-Lindenstrauss Families

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2011English

The Johnson-Lindenstrauss Transform: An Empirical Study

2011English

Dimensionality Reduction: Beyond the Johnson-Lindenstrauss Bound

2011English

The Fast Johnson–Lindenstrauss Transform and Approximate Nearest Neighbors

SIAM Journal on Computing
MathematicsComputer Science
2009English

White but Not Quite: Normalizing Colonial Conquests Through Spatial Mimicry

Antipode
DevelopmentEarth-Surface ProcessesPlanningGeography
2013English

Zabreǐko Lemma Does Not Extend to the Incomplete Normed Space

Pure Mathematics
2014English

Partial Regularity of Almost Minimizing Rectifiable G Chains in Hilbert Space

American Journal of Mathematics
Mathematics
2019English

What Characterizes Planetary Space Weather?

Astronomy and Astrophysics Review
AstrophysicsAstronomyPlanetary ScienceSpace
2014English

An Easy Example of a $0$-Space Not Almost Rimcompact

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1990English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy