Amanote Research

Amanote Research

    RegisterSign In

Quantifying Business Process Optimization Using Regression

American Journal of Applied Sciences - United States
doi 10.3844/ajassp.2015.945.951
Full Text
Open PDF
Abstract

Available in full text

Categories
Multidisciplinary
Date

December 1, 2015

Authors
Gezani Richman MiyambuSolly Matshonisa Seeletse
Publisher

Science Publications


Related search

Gaussian Process Regression for Geometry Optimization

Journal of Chemical Physics
MedicineTheoretical ChemistryAstronomyPhysicsPhysical
2018English

Optimization of Mild Steel Welding Process Parameters Using Multivariate Linear Regression

Journal of Engineering Research and Reports
2020English

Parametric Speech Synthesis Based on Gaussian Process Regression Using Global Variance and Hyperparameter Optimization

2014English

Optimization of the Bounding Box Regression Process of SSD Model

2019English

Analyzing Business Process Anomalies Using Autoencoders

Machine Learning
Artificial IntelligenceSoftware
2018English

Business Process Assessment Using Discrete Simulation

1999English

Cautious Model Predictive Control Using Gaussian Process Regression

IEEE Transactions on Control Systems Technology
ControlSystems EngineeringElectricalElectronic Engineering
2019English

Energy-Driven Image Interpolation Using Gaussian Process Regression

Journal of Applied Mathematics
Applied Mathematics
2012English

An Approach to BPMN Based Business Process Models Analysis and Optimization

Radio Electronics, Computer Science, Control
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy