Amanote Research

Amanote Research

    RegisterSign In

A Proof of Two Fundamental Theorems on Linear Transformations in Hilbert Space, Without Use of the Axiom of Choice

Bulletin of the American Mathematical Society
doi 10.1090/s0002-9904-1947-08912-6
Full Text
Open PDF
Abstract

Available in full text

Date

October 1, 1947

Authors
I. Barsotti
Publisher

American Mathematical Society (AMS)


Related search

Tychonoff's Theorem Without the Axiom of Choice

Fundamenta Mathematicae
Number TheoryAlgebra
1981English

A Direct Proof of Two Theorems on Two-Line Partitions

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1965English

On Linear Equations in Hilbert Space

Bulletin of the American Mathematical Society
1944English

Correction To: Some Restricted Lindenbaum Theorems Equivalent to the Axiom of Choice

Logica Universalis
Applied MathematicsLogic
2020English

A Proof of the Independence of the Axiom of Choice From the Boolean Prime Ideal Theorem

Commentationes Mathematicae Universitatis Carolinae
Mathematics
2015English

The Axiom of Choice

2004English

On the ‘‘Third Axiom of Metric Space”

Transactions of the American Mathematical Society
MathematicsApplied Mathematics
1927English

A Geometric Form of the Axiom of Choice

Fundamenta Mathematicae
Number TheoryAlgebra
1972English

Real-Linear Operators on Quaternionic Hilbert Space

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1973English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy