Amanote Research

Amanote Research

    RegisterSign In

CGPA: Coarse-Grained Pruning of Activations for Energy-Efficient RNN Inference

IEEE Micro - United States
doi 10.1109/mm.2019.2929742
Full Text
Open PDF
Abstract

Available in full text

Categories
HardwareElectronic EngineeringElectricalArchitectureSoftware
Date

September 1, 2019

Authors
Marc RieraJose-Maria ArnauAntonio Gonzalez
Publisher

Institute of Electrical and Electronics Engineers (IEEE)


Related search

Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields

2019English

Coarse-Grained Complexity for Dynamic Algorithms

2020English

Non-Conformal Coarse-Grained Potentials for Water

Journal of Chemical Physics
MedicineTheoretical ChemistryAstronomyPhysicsPhysical
2017English

Capturing RNA Folding Free Energy With Coarse-Grained Molecular Dynamics Simulations

Scientific Reports
Multidisciplinary
2017English

Regular Mapping for Coarse-Grained Reconfigurable Architectures

English

A Coarse-Grained Normal Mode Approach for Macromolecules:An Efficient Implementation and Application to Ca2+-ATPase

Biophysical Journal
Biophysics
2002English

Sensitivity of Coarse-Grained Mechano-Sensation

Biophysical Journal
Biophysics
2011English

Coarse-Grained Simulations of Nucleoid Structure

Biophysical Journal
Biophysics
2014English

Coarse-Grained Parallel Geometric Search

Journal of Parallel and Distributed Computing
Computer NetworksHardwareCommunicationsArchitectureTheoretical Computer ScienceArtificial IntelligenceSoftware
1999English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy