Amanote Research

Amanote Research

    RegisterSign In

Steepest Descent Paths for Integrals Defining the Modified Bessel Functions of Imaginary Order

Methods and Applications of Analysis
doi 10.4310/maa.1994.v1.n1.a2
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 1994

Authors
N. M. Temme
Publisher

International Press of Boston


Related search

Steepest Descent

2010English

A Steepest Descent Algorithm for M-Convex Functions on Jump Systems

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Electronic EngineeringComputer GraphicsSignal ProcessingApplied MathematicsElectricalComputer-Aided Design
2006English

Bessel Functions of Fractional Order

Computers in Physics
1991English

Efficient Computation of a Class of Singular Oscillatory Integrals by Steepest Descent Method

Applied Mathematical Sciences
2014English

Certain Unified Integrals Associated With Bessel Functions

Boundary Value Problems
Number TheoryAnalysisAlgebra
2013English

Numerical Values of Some Integrals Involving Bessel Functions

Proceedings of the Edinburgh Mathematical Society
Mathematics
1962English

Complete Monotonicity of Modified Bessel Functions

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1990English

An Extension of Positivity for Integrals of Bessel Functions and Buhmann’s Radial Basis Functions

Proceedings of the American Mathematical Society, Series B
2018English

Functional Inequalities for Galué's Generalized Modified Bessel Functions

Journal of Mathematical Inequalities
Analysis
2007English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy