Amanote Research

Amanote Research

    RegisterSign In

Jordan Blocks of Cuspidal Representations of Symplectic Groups

Algebra and Number Theory - United States
doi 10.2140/ant.2018.12.2327
Full Text
Open PDF
Abstract

Available in full text

Categories
Number TheoryAlgebra
Date

December 31, 2018

Authors
Corinne BlondelGuy HenniartShaun Stevens
Publisher

Mathematical Sciences Publishers


Related search

Cuspidal ℓ \Ell -Modular Representations of P-Adic Classical Groups

Journal für die Reine und Angewandte Mathematik
MathematicsApplied Mathematics
2019English

The Jordan–Schwinger Representations of Cayley–Klein Groups

2020English

Book Review: The Endoscopic Classification of Representations—orthogonal and Symplectic Groups

Bulletin of the American Mathematical Society
MathematicsApplied Mathematics
2017English

Central Morphisms and Cuspidal Automorphic Representations

Journal of Number Theory
Number TheoryAlgebra
2019English

Irreducible Cuspidal Representations With Prescribed Local Behavior

American Journal of Mathematics
Mathematics
2011English

Cuspidal Representations of Rational Cherednik Algebras at T = 0

Mathematische Zeitschrift
Mathematics
2010English

Finite Symplectic Matrix Groups

Experimental Mathematics
Mathematics
2011English

Zeta Functions of Jordan Algebras Representations

Annales de l'Institut Fourier
GeometryTopologyNumber TheoryAlgebra
1995English

Symplectic Supercuspidal Representations of GL(2n) Overp-Adic Fields

Pacific Journal of Mathematics
Mathematics
2010English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy