Amanote Research

Amanote Research

    RegisterSign In

Principal Components Analysis of Multispectral Image Data

Microscopy Today
doi 10.1017/s1551929500056297
Full Text
Open PDF
Abstract

Available in full text

Date

September 1, 2004

Authors
Brent NealJohn C. Russ
Publisher

Cambridge University Press (CUP)


Related search

Principal Components Regression by Using Generalized Principal Components Analysis

JOURNAL OF THE JAPAN STATISTICAL SOCIETY
2013English

A Multi-Dimensional Functional Principal Components Analysis of EEG Data

Biometrics
StatisticsGeneticsProbabilityMolecular BiologyBiochemistryApplied MathematicsMicrobiology ImmunologyBiological SciencesMedicineAgricultural
2017English

The Use of Principal Components Analysis in Analysing Variable Star Data

International Astronomical Union Colloquium
2000English

Figure 3: Discriminant Analysis of Principal Components (DAPC) of the Microsatellite Data of Seven Coptoformica Species With 24 Principal Components Included.

English

Illustrative Examples of Principal Components Analysis

English

Principal Components Regression With Data Chosen Components and Related Methods

Technometrics
ModelingApplied MathematicsStatisticsProbabilitySimulation
2003English

Multispectral Image Maps From Landsat Thematic Mapper Data.

1991English

Figure 5: Visual Multispectral Analysis of a Saturated Image.

English

Introducing HYDRA: A Multispectral Data Analysis Toolkit

Bulletin of the American Meteorological Society
Atmospheric Science
2007English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy