Amanote Research

Amanote Research

    RegisterSign In

Option Pricing Under a Double Exponential Jump Diffusion Model

SSRN Electronic Journal
doi 10.2139/ssrn.284202
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2001

Authors
Steven G. KouHui NMI1 Wang
Publisher

Elsevier BV


Related search

Cliquet Option Pricing in a Jump-Diffusion Lévy Model

Modern Stochastics: Theory and Applications
ModelingStatisticsUncertaintyProbabilitySimulation
2018English

Stochastic Volatility Jump-Diffusion Model for Option Pricing

Journal of Mathematical Finance
2011English

Numerical Methods for Discrete Double Barrier Option Pricing Based on Merton Jump Diffusion Model

Open Journal of Statistics
2017English

American Put Option Pricing for Stochastic-Volatility, Jump-Diffusion Models

Proceedings of the American Control Conference
Electronic EngineeringElectrical
2007English

Option Pricing Under a Stressed-Beta Model

Annals of Finance
EconomicsEconometricsFinance
2009English

An Empirical Study on Asymmetric Jump Diffusion for Option and Annuity Pricing

PLoS ONE
Multidisciplinary
2019English

Bounds for Perpetual American Option Prices in a Jump Diffusion Model

Journal of Applied Probability
MathematicsStatisticsUncertaintyProbability
2006English

Option Pricing With Discrete Time Jump Processes

Journal of Economic Dynamics and Control
ControlApplied MathematicsOptimizationEconometricsEconomics
2013English

Optimal Impulse Control for Cash Management With Double Exponential Jump Diffusion Processes

International Journal of Real Options and Strategy
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy