Amanote Research

Amanote Research

    RegisterSign In

Commensurability Classes of 2–bridge Knot Complements

Algebraic and Geometric Topology - United States
doi 10.2140/agt.2008.8.1031
Full Text
Open PDF
Abstract

Available in full text

Categories
GeometryTopology
Date

July 5, 2008

Authors
Alan W ReidGenevieve S Walsh
Publisher

Mathematical Sciences Publishers


Related search

Rigidity Among Prime-Knot Complements

Bulletin of the American Mathematical Society
MathematicsApplied Mathematics
1986English

Cofinitely Hopfian Groups, Open Mappings and Knot Complements

Groups, Geometry, and Dynamics
CombinatoricsGeometryTopologyDiscrete Mathematics
2010English

Determining Incompressibility of Surfaces in Alternating Knot and Link Complements

Pacific Journal of Mathematics
Mathematics
1985English

On Color Energy of Few Classes of Bipartite Graphs and Corresponding Color Complements

Mathematical Journal of Interdisciplinary Sciences
1970English

Commensurability Effects in Viscosity of Nanoconfined Water

ACS Nano
Materials ScienceNanoscienceEngineeringNanotechnologyAstronomyPhysics
2016English

Optimal Presentations for Solvable 2-Knot Groups

Bulletin of the Australian Mathematical Society
Mathematics
1998English

Commensurability and the Character Variety

Mathematical Research Letters
Mathematics
1999English

Limit Sets and Commensurability of Kleinian Groups

Bulletin of the Australian Mathematical Society
Mathematics
2010English

Real 2-Regular Classes and 2-Blocks

Journal of Algebra
Number TheoryAlgebra
2000English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy