Amanote Research

Amanote Research

    RegisterSign In

Beilinson–Kato Elements in K2of Modular Curves

Acta Arithmetica - Poland
doi 10.4064/aa134-3-7
Full Text
Open PDF
Abstract

Available in full text

Categories
Number TheoryAlgebra
Date

January 1, 2008

Authors
François Brunault
Publisher

Institute of Mathematics, Polish Academy of Sciences


Related search

Beilinson–Flach Elements, Stark Units and 𝑝-Adic Iterated Integrals

Forum Mathematicum
MathematicsApplied Mathematics
2019English

Uniformizations of Modular Curves

Communications in Analysis and Geometry
StatisticsProbabilityGeometryUncertaintyAnalysisTopology
1996English

Modular Equations for Hyperelliptic Curves

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
2004English

Equations of Hyperelliptic Modular Curves

Annales de l'Institut Fourier
GeometryTopologyNumber TheoryAlgebra
1991English

Modular Subgroups, Forms, Curves and Surfaces

Canadian Mathematical Bulletin
Mathematics
2002English

Zeta Functions of Twisted Modular Curves

Journal of the Australian Mathematical Society
Mathematics
2006English

Coarse Base Change Fails for Some Modular Curves

Algebraic Geometry
GeometryTopologyNumber TheoryAlgebra
2017English

Elliptic Curves, Modular Forms, and Their L-Functions

Choice Reviews Online
2011English

Determination of Modular Elliptic Curves by Heegner Points

Pacific Journal of Mathematics
Mathematics
1997English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy