Amanote Research

Amanote Research

    RegisterSign In

Estimating State and Parameters in State Space Models of Spike Trains

doi 10.1017/cbo9781139941433.007
Full Text
Open PDF
Abstract

Available in full text

Date

Unknown

Authors
J. H. MacKeL. BuesingM. Sahani
Publisher

Cambridge University Press


Related search

Statistical Models of Spike Trains

2009English

Estimating Behavioral Parameters in Animal Movement Models Using a State-Augmented Particle Filter

Ecology
EvolutionEcologySystematicsBehavior
2011English

Distributed State Space Generation of Discrete-State Stochastic Models

INFORMS Journal on Computing
Management ScienceComputer Science ApplicationsInformation SystemsOperations ResearchSoftware
1998English

Bootstrap Approximation to Prediction MSE for State-Space Models With Estimated Parameters

Journal of Time Series Analysis
UncertaintyApplied MathematicsStatisticsProbability
2005English

Estimating Distemper Virus Dynamics Among Wolves and Grizzly Bears Using Serology and Bayesian State-Space Models

Ecology and Evolution
EvolutionEcologyNatureSystematicsBehaviorLandscape Conservation
2018English

Direct Estimation of Inhomogeneous Markov Interval Models of Spike Trains

Neural Computation
ArtsCognitive NeuroscienceHumanities
2009English

Deterministic and Stochastic Particle Filters in State-Space Models

2001English

Multimedia Mapping Using Continuous State Space Models

English

Joint Pausiness in Parallel Spike Trains

BMC Neuroscience
NeuroscienceCellularMolecular Neuroscience
2015English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy