Amanote Research

Amanote Research

    RegisterSign In

Results of Ambrosetti-Prodi Type for Non-Selfadjoint Elliptic Operators

doi 10.17771/pucrio.acad.33600
Full Text
Open PDF
Abstract

Available in full text

Date

Unknown

Authors
ANDRE ZACCUR UCHOA CAVALCANTI
Publisher

Faculdades Catolicas


Related search

On a Comparison Theorem for Selfadjoint Partial Differential Equations of Elliptic Type

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1955English

Inequalities of Hermite-Hadamard Type for Functions of Selfadjoint Operators and Matrices

Journal of Mathematical Inequalities
Analysis
2017English

Selfadjoint Operators, Normal Operators, and Characterizations

Operators and Matrices
Number TheoryAnalysisAlgebra
2019English

O Teorema De Ambrosetti E Prodi Para Não Linearidades Lipschitz

English

Inverse-Average-Type Finite Element Discretizations of Selfadjoint Second-Order Elliptic Problems

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
1988English

Spectral Perturbation Bounds for Selfadjoint Operators I

Operators and Matrices
Number TheoryAnalysisAlgebra
2008English

Reverse Jensen’s Type Trace Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces

Annales Mathematicae Silesianae
2016English

The First Szegö Limit Theorem for Non-Selfadjoint Operators in the Følner Algebra

Mathematica Scandinavica
Mathematics
2005English

On Factorizations of Selfadjoint Ordinary Differential Operators

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1982English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy