Amanote Research

Amanote Research

    RegisterSign In

Predicting Time-Varying Parameters With Parameter-Driven and Observation-Driven Models

Review of Economics and Statistics - United States
doi 10.1162/rest_a_00533
Full Text
Open PDF
Abstract

Available in full text

Categories
EconomicsEconometricsSocial Sciences
Date

March 1, 2016

Authors
Siem Jan KoopmanAndré LucasMarcel Scharth
Publisher

MIT Press - Journals


Related search

Accounting for Missing Values in Score-Driven Time-Varying Parameter Models

SSRN Electronic Journal
2016English

Observation-Driven Models for Poisson Counts

Biometrika
StatisticsProbabilityUncertaintyApplied MathematicsBiological SciencesAgriculturalMathematics
2003English

Activity Driven Modeling of Time Varying Networks

Scientific Reports
Multidisciplinary
2012English

Observation-Driven Models for Realized Variances and Overnight Returns

SSRN Electronic Journal
2019English

Data-Driven Prediction of EVAR With Confidence in Time-Varying Datasets

2016English

Real-Time Observation of Laser-Driven Electron Acceleration

Nature Physics
AstronomyPhysics
2011English

Image-Driven Parameter Estimation in Absorption-Diffusion Models of Chromoscopy

SIAM Journal on Imaging Sciences
MathematicsApplied Mathematics
2011English

Data-Driven Reduced Model Construction With Time-Domain Loewner Models

SIAM Journal of Scientific Computing
Computational MathematicsApplied Mathematics
2017English

Kuramoto Model With Time-Varying Parameters

Physical Review E
2012English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy