Amanote Research

Amanote Research

    RegisterSign In

Hydrometeor Classification Through Statistical Clustering of Polarimetric Radar Measurements: A Semi-Supervised Approach

Atmospheric Measurement Techniques - Germany
doi 10.5194/amt-9-4425-2016
Full Text
Open PDF
Abstract

Available in full text

Categories
Atmospheric Science
Date

September 8, 2016

Authors
Nikola BesicJordi Figueras i VenturaJacopo GrazioliMarco GabellaUrs GermannAlexis Berne
Publisher

Copernicus GmbH


Related search

Unraveling Hydrometeor Mixtures in Polarimetric Radar Measurements

2018English

Unraveling Hydrometeor Mixtures in Polarimetric Radar Measurements

2018English

Unraveling Hydrometeor Mixtures in Polarimetric Radar Measurements

2018English

Unraveling Hydrometeor Mixtures in Polarimetric Radar Measurements

2018English

Improving Semi-Supervised Classification Using Clustering

ICST Transactions on Scalable Information Systems
2018English

Semi-Supervised Spectral Clustering

2018English

Detection of Ice Hydrometeor Alignment Using an Airborne W-Band Polarimetric Radar

Journal of Atmospheric and Oceanic Technology
Ocean EngineeringAtmospheric Science
1997English

Semi-Supervised Clustering Using Heterogeneous Dissimilarities

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2010English

A Supervised Clustering Method for Text Classification

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2005English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy