Amanote Research

Amanote Research

    RegisterSign In

Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

Astrophysical Journal - United States
doi 10.3847/0004-637x/831/2/135
Full Text
Open PDF
Abstract

Available in full text

Categories
AstrophysicsAstronomyPlanetary ScienceSpace
Date

November 2, 2016

Authors
M. NtampakaH. TracD. J. SutherlandS. FromenteauB. PóczosJ. Schneider
Publisher

American Astronomical Society


Related search

Using Machine Learning for Precision Measurements

EPJ Web of Conferences
AstronomyPhysics
2019English

Using the Outskirts of Galaxy Clusters to Determine Their Mass Accretion Rate

2016English

The Baryon Mass Function for Galaxy Clusters

Astronomy and Astrophysics
AstrophysicsAstronomyPlanetary ScienceSpace
2006English

Hydrostatic Mass Profiles in X-Cop Galaxy Clusters

Astronomy and Astrophysics
AstrophysicsAstronomyPlanetary ScienceSpace
2019English

Morphology-Assisted Galaxy Mass-To-Light Predictions Using Deep Learning

Astronomy and Astrophysics
AstrophysicsAstronomyPlanetary ScienceSpace
2019English

The Insignificant Evolution of the Richness-Mass Relation of Galaxy Clusters

Astronomy and Astrophysics
AstrophysicsAstronomyPlanetary ScienceSpace
2014English

XMM-NewtonandChandracross-calibration Using HIFLUGCS Galaxy Clusters

Astronomy and Astrophysics
AstrophysicsAstronomyPlanetary ScienceSpace
2015English

Improved Localization Accuracy Using Machine Learning: Predicting and Refining RSS Measurements

2018English

Galaxy Evolution in Clusters

English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy