Amanote Research

Amanote Research

    RegisterSign In

INESC-ID at SemEval-2016 Task 4-A: Reducing the Problem of Out-Of-Embedding Words

doi 10.18653/v1/s16-1036
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2016

Authors
Silvio AmirRamón AstudilloWang LingMario J. SilvaIsabel Trancoso
Publisher

Association for Computational Linguistics


Related search

SteM at SemEval-2016 Task 4: Applying Active Learning to Improve Sentiment Classification

2016English

LSIS at SemEval-2017 Task 4: Using Adapted Sentiment Similarity Seed Words for English and Arabic Tweet Polarity Classification

2017English

ELiRF-UPV at SemEval-2017 Task 4: Sentiment Analysis Using Deep Learning

2017English

DUTH at SemEval-2017 Task 4: A Voting Classification Approach for Twitter Sentiment Analysis

2017English

AUEB-ABSA at SemEval-2016 Task 5: Ensembles of Classifiers and Embeddings for Aspect Based Sentiment Analysis

2016English

Amobee at SemEval-2017 Task 4: Deep Learning System for Sentiment Detection on Twitter

2017English

NNEMBs at SemEval-2017 Task 4: Neural Twitter Sentiment Classification: A Simple Ensemble Method With Different Embeddings

2017English

CDE-IIITH at SemEval-2016 Task 12: Extraction of Temporal Information From Clinical Documents Using Machine Learning Techniques

2016English

Senti17 at SemEval-2017 Task 4: Ten Convolutional Neural Network Voters for Tweet Polarity Classification

2017English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy