Amanote Research

Amanote Research

    RegisterSign In

Approximate Inversion of the Wave-Equation Hessian via Randomized Matrix Probing

doi 10.1190/segam2012-1262.1
Full Text
Open PDF
Abstract

Available in full text

Date

September 1, 2012

Authors
Pierre-David LetourneauLaurent DemanetHenri Calandra
Publisher

Society of Exploration Geophysicists


Related search

Efficient Computation of Approximate Low-Rank Hessian for 3D CSEM Inversion

2014English

Approximate Solution of Wave Equation Using Fuzzy Number

International Journal of Computer Applications
2013English

3D Wave-Equation Dispersion Inversion of Surface Waves

2018English

On Approximate Symmetry and Approximate Solutions of the Nonlinear Wave Equation With a Small Parameter

Journal of Physics A: Mathematical and General
1989English

Wave-Equation Rayleigh Wave Dispersion Inversion Using Fundamental and Higher Modes

Geophysics
PetrologyEnergyGeochemistryGeophysics
2019English

Least‐squares Wave‐equation Migration for AVP/AVA Inversion

Geophysics
PetrologyEnergyGeochemistryGeophysics
2003English

Approximate Matrix Inversion for High-Throughput Data Detection in the Large-Scale MIMO Uplink

2013English

Multiscale and Layer-Stripping Wave-Equation Dispersion Inversion of Rayleigh Waves

2018English

Acoustic Wave Equation Traveltime and Waveform Inversion of Crosshole Seismic Data

1993English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy