Amanote Research

Amanote Research

    RegisterSign In

Determination of the Number of Subgroups of an Abelian Group

Bulletin of the American Mathematical Society
doi 10.1090/s0002-9904-1927-04354-3
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 1927

Authors
G. A. Miller
Publisher

American Mathematical Society (AMS)


Related search

Abelian P-Subgroups of the General Linear Group

Journal of the Australian Mathematical Society
1970English

Finite Abelian Subgroups of the Mapping Class Group

Algebraic and Geometric Topology
GeometryTopology
2007English

Finitep-Group With Small Abelian Subgroups

Journal of Mathematics
Mathematics
2013English

The Number of Subgroups of Given Index in Nondenumerable Abelian Groups

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1954English

Characteristic Subgroups of a Finite Abelian Group $Z_n×Z_n$

Annals of Pure and Applied Mathematics
2017English

The Number of Idempotents in Abelian Group Rings

Filomat
Mathematics
2012English

Galois Group of the Maximal Abelian Extension Over an Algebraic Number Field

Nagoya Mathematical Journal
Mathematics
1957English

The Determination of the Imaginary Abelian Number Fields With Class Number One

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
1994English

The Number of Hall Π-Subgroups of a Π-Separable Group

Pure Mathematics
2016English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy