Amanote Research

Amanote Research

    RegisterSign In

On Ginsburg-Isbell Derivatives and Ranks of Metric Spaces

Pacific Journal of Mathematics - United States
doi 10.2140/pjm.1984.111.39
Full Text
Open PDF
Abstract

Available in full text

Categories
Mathematics
Date

March 1, 1984

Authors
Aarno Hohti
Publisher

Mathematical Sciences Publishers


Related search

Some Notes on the Paper "The Equivalence of Cone Metric Spaces and Metric Spaces"

Fixed Point Theory and Applications
GeometryApplied MathematicsTopology
2012English

Quasicontractions on Metric Spaces

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1979English

Matkowski Theorems in the Context of Quasi-Metric Spaces and Consequences on G-Metric Spaces

Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica
Applied MathematicsAnalysis
2016English

Nonlinear Balayage on Metric Spaces

Nonlinear Analysis, Theory, Methods and Applications
Applied MathematicsAnalysis
2009English

Results on $Ω_μ$-Metric Spaces

Fundamenta Mathematicae
Number TheoryAlgebra
1969English

On Convex Metric Spaces I

Fundamenta Mathematicae
Number TheoryAlgebra
1961English

On the Representation of Metric Spaces

Bulletin of the Australian Mathematical Society
Mathematics
1979English

Metric and Symmetric Spaces

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1974English

On Bornology of Extended Quasi-Metric Spaces

Hacettepe Journal of Mathematics and Statistics
StatisticsProbabilityAlgebraGeometryAnalysisNumber TheoryTopology
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy