Amanote Research

Amanote Research

    RegisterSign In

Constructing a Probabilistic Model for Automated Liver Region Segmentation Using Non-Contrast X-Ray Torso CT Images

Lecture Notes in Computer Science - Germany
doi 10.1007/11866763_105
Full Text
Open PDF
Abstract

Available in full text

Categories
Computer ScienceTheoretical Computer Science
Date

January 1, 2006

Authors
Xiangrong ZhouTeruhiko KitagawaTakeshi HaraHiroshi FujitaXuejun ZhangRyujiro YokoyamaHiroshi KondoMasayuki KanematsuHiroaki Hoshi
Publisher

Springer Berlin Heidelberg


Related search

A Simple Automated Void Defect Detection for Poor Contrast X-Ray Images of BGA

2015English

Automated Bone Segmentation From Pelvic CT Images

2008English

Model-Based Pancreas Segmentation in Portal Venous Phase Contrast-Enhanced CT Images

Journal of Digital Imaging
Nuclear MedicineRadiologyUltrasound TechnologyRadiologicalComputer Science ApplicationsImaging
2013English

Automatic Pelvis Segmentation From X-Ray Images of a Mouse Model

2017English

Liver Segmentation in Contrast Enhanced CT Data Using Graph Cuts and Interactive 3D Segmentation Refinement Methods

Medical Physics
MedicineNuclear MedicineRadiologyImagingBiophysics
2012English

Contrast Enhancement of Micro Dose X-Ray Images

2014English

A Novel Mouse Segmentation Method Based on Dynamic Contrast Enhanced Micro-Ct Images

PLoS ONE
Multidisciplinary
2017English

General Automated Flaw Detection Scheme for NDE X-Ray Images

1993English

Automated Segmentation of Iris Images Using Visible Wavelength Face Images

2011English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy