Amanote Research

Amanote Research

    RegisterSign In

Storage Efficient Trajectory Clustering and K-Nn for Robust Privacy Preserving Spatio-Temporal Databases

Algorithms - Switzerland
doi 10.3390/a12120266
Full Text
Open PDF
Abstract

Available in full text

Categories
MathematicsComputational MathematicsNumerical AnalysisTheoretical Computer ScienceComputational Theory
Date

December 11, 2019

Authors
Elias DritsasAndreas KanavosMaria TrigkaSpyros SioutasAthanasios Tsakalidis
Publisher

MDPI AG


Related search

Privacy-Preserving Clustering on Distributed Databases: A Review and Some Contributions

2011English

Privacy Preserving Clustering

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2005English

Efficient K-Nn for Playlist Continuation

2018English

Privacy-Preserving Data Publishing for Horizontally Partitioned Databases

2008English

Object-Relational Spatio-Temporal Databases

English

Secure and Efficient K-Nn Queries

IFIP Advances in Information and Communication Technology
Computer NetworksInformation SystemsManagementCommunications
2017English

New Incremental Privacy-Preserving Clustering Protocols

Lecture Notes on Software Engineering
2013English

Robust Seismicity Forecasting Based on Bayesian Parameter Estimation for Epidemiological Spatio-Temporal Aftershock Clustering Models

Scientific Reports
Multidisciplinary
2017English

Hierarchical Model for Preserving Privacy in Vertically Partitioned Distributed Databases

International Journal of Computer Applications
2013English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy