Amanote Research

Amanote Research

    RegisterSign In

Signal Theory for SVM Kernel Design With Applications to Parameter Estimation and Sequence Kernels

Neurocomputing - Netherlands
doi 10.1016/j.neucom.2008.01.034
Full Text
Open PDF
Abstract

Available in full text

Categories
Computer Science ApplicationsArtificial IntelligenceCognitive Neuroscience
Date

December 1, 2008

Authors
J.D.B. NelsonR.I. DamperS.R. GunnB. Guo
Publisher

Elsevier BV


Related search

Kernel Principal Angles for Classification Machines With Applications to Image Sequence Interpretation

English

Theory of Parameter Estimation

Banach Center Publications
1997English

Integer Parameter Estimation in Linear Models With Applications to GPS

English

Non-Mercer Kernels for SVM Object Recognition

2004English

Exploitation of Cyclostationarity for Signal-Parameter Estimation and System Identification

1993English

Algorithm for Simultaneous Parameter Estimation of a Multiharmonic Signal

Metrology and Measuring Systems
ControlSystems EngineeringInstrumentation
2012English

Evaluation of SVM Kernels for Health Risks Assessment

HELIX
2019English

Decision Feedback Sequence Estimation for Unwhitened ISI Channels With Applications to Multiuser Detection

IEEE Journal on Selected Areas in Communications
Computer NetworksElectronic EngineeringElectricalCommunications
1998English

A Signal Theory Approach to Support Vector Classification: The Sinc Kernel

Neural Networks
Artificial IntelligenceCognitive Neuroscience
2009English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy