Amanote Research

Amanote Research

    RegisterSign In

Separation Metrics for Real-Valued Random Variables

International Journal of Mathematics and Mathematical Sciences - United States
doi 10.1155/s0161171284000429
Full Text
Open PDF
Abstract

Available in full text

Categories
Mathematics
Date

January 1, 1984

Authors
Michael D. Taylor
Publisher

Hindawi Limited


Related search

Probability Generating Functions for Discrete Real-Valued Random Variables

Theory of Probability and its Applications
UncertaintyStatisticsProbability
2008English

Proposition-Valued Random Variables as Information

Synthese
PhilosophySocial Sciences
2010English

An Ergodic Theorem for Fréchet-Valued Random Variables

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1978English

Martingales of Banach-Valued Random Variables

Bulletin of the American Mathematical Society
1960English

Integrability of Infinite Sums of Independent Vector-Valued Random Variables

Transactions of the American Mathematical Society
MathematicsApplied Mathematics
1975English

A Strong Law of Large Numbers for Set-Valued Negatively Dependent Random Variables

International Journal of Statistics and Probability
2016English

Separation of the Maxima in Samples of Geometric Random Variables

Applicable Analysis and Discrete Mathematics
CombinatoricsApplied MathematicsAnalysisDiscrete Mathematics
2011English

A Clustering-Based Model-Building EA for Optimization Problems With Binary and Real-Valued Variables

2015English

Random Variables

The Brownian Motion
2019English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy