Amanote Research

Amanote Research

    RegisterSign In

Using Word Embeddings to Enforce Document-Level Lexical Consistency in Machine Translation

The Prague Bulletin of Mathematical Linguistics
doi 10.1515/pralin-2017-0011
Full Text
Open PDF
Abstract

Available in full text

Date

June 1, 2017

Authors
Eva Martínez GarciaCarles CreusCristina España-BonetLluís Màrquez
Publisher

Walter de Gruyter GmbH


Related search

Learning to Generate Word- And Phrase-Embeddings for Efficient Phrase-Based Neural Machine Translation

2019English

Improving Document Clustering Using Automated Machine Translation

2012English

Temporal Word Analogies: Identifying Lexical Replacement With Diachronic Word Embeddings

2017English

Word Embeddings for Multi-Label Document Classification

2017English

Lexical Morphology in Machine Translation

2009English

Using Centroids of Word Embeddings and Word Mover's Distance for Biomedical Document Retrieval in Question Answering

2016English

The Lexical Context in a Style Analysis: A Word Embeddings Approach

Corpus Linguistics and Linguistic Theory
LinguisticsLanguage
2018English

On the Importance of Word Boundaries in Character-Level Neural Machine Translation

2019English

Review Extract Using Word Embeddings

DEStech Transactions on Computer Science and Engineering
2019English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy