Amanote Research
Register
Sign In
Stable Weighted Minimal Surfaces in Manifolds With Non-Negative Bakry-Emery Ricci Tensor
Communications in Analysis and Geometry
- United States
doi 10.4310/cag.2013.v21.n5.a7
Full Text
Open PDF
Abstract
Available in
full text
Categories
Statistics
Probability
Geometry
Uncertainty
Analysis
Topology
Date
January 1, 2013
Authors
Gang Liu
Publisher
International Press of Boston
Related search
Li–Yau–Hamilton Estimates and Bakry–Emery–Ricci Curvature
Nonlinear Analysis, Theory, Methods and Applications
Applied Mathematics
Analysis
On Riemannian Manifolds With Positive Weighted Ricci Curvature of Negative Effective Dimension
Kyushu Journal of Mathematics
Mathematics
Minimal Surfaces With the Ricci Condition in $4$-Dimensional Space Forms
Proceedings of the American Mathematical Society
Mathematics
Applied Mathematics
Non-Proper Helicoid-Like Limits of Closed Minimal Surfaces in 3-Manifolds
Mathematische Zeitschrift
Mathematics
Bifurcation of Minimal Surfaces in Riemannian Manifolds
Transactions of the American Mathematical Society
Mathematics
Applied Mathematics
Curvature Estimates for Minimal Surfaces in $3$-Manifolds
Annales Scientifiques de l'Ecole Normale Superieure
Mathematics
Collapsed Manifolds With Ricci Bounded Covering Geometry
Transactions of the American Mathematical Society
Mathematics
Applied Mathematics
Kähler Manifolds With Almost Non-Negative Bisectional Curvature
Asian Journal of Mathematics
Mathematics
Applied Mathematics
Computing Non-Negative Tensor Factorizations
Optimization Methods and Software
Control
Applied Mathematics
Optimization
Software