Amanote Research

Amanote Research

    RegisterSign In

Optimal Transport and Ricci Curvature for Metric- Measure Spaces

Surveys in Differential Geometry
doi 10.4310/sdg.2006.v11.n1.a8
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2006

Authors
John Lott
Publisher

International Press of Boston


Related search

$BMO$ Spaces for Nondoubling Metric Measure Spaces

Publicacions Matematiques
Mathematics
2020English

Ricci Curvature on Alexandrov Spaces and Rigidity Theorems

Communications in Analysis and Geometry
StatisticsProbabilityGeometryUncertaintyAnalysisTopology
2010English

Cantor Sets in Metric Measure Spaces

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1970English

Adams Inequality on Metric Measure Spaces

Revista Matematica Iberoamericana
Mathematics
2009English

Ricci Curvature and Monotonicity for Harmonic Functions

Calculus of Variations and Partial Differential Equations
Applied MathematicsAnalysis
2013English

Analysis and Stochastic Processes on Metric Measure Spaces

2019English

Harmonic Functions of Polynomial Growth on Singular Spaces With Nonnegative Ricci Curvature

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
2010English

The Stepanov Differentiability Theorem in Metric Measure Spaces

Journal of Geometric Analysis
GeometryTopology
2004English

Sectional and Ricci Curvature for Three-Dimensional Lie Groups

Journal of Mathematics
Mathematics
2016English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy