Amanote Research

Amanote Research

    RegisterSign In

Rate Optimal Semiparametric Estimation of the Memory Parameter of the Gaussian Time Series With Long-Range Dependence

Journal of Time Series Analysis - United States
doi 10.1111/1467-9892.00038
Full Text
Open PDF
Abstract

Available in full text

Categories
UncertaintyApplied MathematicsStatisticsProbability
Date

January 1, 1997

Authors
Liudas GiraitisPeter M. RobinsonAlexander Samarov
Publisher

Wiley


Related search

Statistical Estimation of Nonstationary Gaussian Processes With Long-Range Dependence and Intermittency

2010English

Detection of the Presence of Long Range Dependence in Time Series

English

Parameter Estimation Using Chaotic Time Series

Tellus A: Dynamic Meteorology and Oceanography
2005English

Subsampling Inference for the Mean of Heavy-Tailed Long-Memory Time Series

Journal of Time Series Analysis
UncertaintyApplied MathematicsStatisticsProbability
2011English

Effect of Parameter Calculation in Direct Estimation of the Lyapunov Exponent in Short Time Series

Discrete Dynamics in Nature and Society
ModelingSimulation
2002English

Clustering Time Series Data by SOM for the Optimal Hedge Ratio Estimation

2008English

Mini-Workshop: Semiparametric Modelling of Multivariate Economic Time Series With Changing Dynamics

Oberwolfach Reports
2010English

Semiparametric Identification of Structural Dynamic Optimal Stopping Time Models

Working Paper Series
2007English

On Defining Long-Range Dependence

2010English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy