Amanote Research

Amanote Research

    RegisterSign In

Empirical Investigation of Optimization Algorithms in Neural Machine Translation

The Prague Bulletin of Mathematical Linguistics
doi 10.1515/pralin-2017-0005
Full Text
Open PDF
Abstract

Available in full text

Date

June 1, 2017

Authors
Parnia BaharTamer AlkhouliJan-Thorsten PeterChristopher Jan-Steffen BrixHermann Ney
Publisher

Walter de Gruyter GmbH


Related search

an Empirical Comparison of Domain Adaptation Methods for Neural Machine Translation

2017English

an Empirical Study on the Effectiveness of Images in Multimodal Neural Machine Translation

2017English

Sentiment Aware Neural Machine Translation

2019English

An Empirical Comparison of Neural Networks and Machine Learning Algorithms for EEG Gait Decoding

Scientific Reports
Multidisciplinary
2020English

Six Challenges for Neural Machine Translation

2017English

Sequence-To-Dependency Neural Machine Translation

2017English

Unraveling the Contribution of Image Captioning and Neural Machine Translation for Multimodal Machine Translation

The Prague Bulletin of Mathematical Linguistics
2017English

Detecting Untranslated Content for Neural Machine Translation

Journal of Natural Language Processing
2018English

Sogou Neural Machine Translation Systems for WMT17

2017English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy