Amanote Research

Amanote Research

    RegisterSign In

On Mordell's Equation Y 2 - K = X 3 : A Problem of Stolarsky

Mathematics of Computation - United States
doi 10.2307/2008008
Full Text
Open PDF
Abstract

Available in full text

Categories
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
Date

April 1, 1986

Authors
Ray P. Steiner
Publisher

JSTOR


Related search

Shorter Notes: A Note on Mordell's Equation Y 2 = X 3 + K

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1973English

SOLUTION OF THE DIOPHANTINE EQUATION $(2^k-1)^x+(2^k)^y=z^2$

International Journal of Pure and Applied Mathematics
MathematicsApplied Mathematics
2015English

On THE DIOPHANTINE EQUATION $3^x + 45^y = Z^2$

International Journal of Pure and Applied Mathematics
MathematicsApplied Mathematics
2014English

On an Integral Equation With a Kernel K(x, Y)⊂Lp (1<p≤2)

Japanese journal of mathematics :transactions and abstracts
1953English

A Simple Solution of the Diophantine Equation $X^3 + Y^3 = Z^2 + T^2$

Bulletin of the American Mathematical Society
1949English

The Diophantine Equation $X^2+11=3^k$ and Related Questions.

Mathematica Scandinavica
Mathematics
1976English

On THE EQUATION X(x+d)…(x+(k-1)d)=By 2

Glasgow Mathematical Journal
Mathematics
2000English

The Exponential Diophantine Equation (3am^2-1)^x+(a(A-3)m^2+1)^y=(am)^z

TURKISH JOURNAL OF MATHEMATICS
2019English

On THE DIOPHANTINE EQUATION $7^x + 8^y = Z^2$

International Journal of Pure and Applied Mathematics
MathematicsApplied Mathematics
2013English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy