Amanote Research

Amanote Research

    RegisterSign In

Data-Driven Spatio-Temporal Discretization for Pedestrian Flow Characterization

Transportation Research, Part C: Emerging Technologies - United Kingdom
doi 10.1016/j.trc.2017.08.026
Full Text
Open PDF
Abstract

Available in full text

Categories
TransportationManagement ScienceAutomotive EngineeringStructural EngineeringCivilComputer Science ApplicationsOperations Research
Date

September 1, 2018

Authors
Marija NikolićMichel Bierlaire
Publisher

Elsevier BV


Related search

Indexing Spatio-Temporal Data Warehouses

English

Standards-Based Services for Big Spatio-Temporal Data

ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
2016English

Spatio-Temporal Functional Data Analysis for Wireless Sensor Networks Data

Environmetrics
Ecological ModelingStatisticsProbability
2015English

Spatio-Temporal Data Mining for Air Pollution Problems

English

Combining Spatio-Temporal Appearance Descriptors and Optical Flow for Human Action Recognition in Video Data

2014English

SILKNOWViz: Spatio-Temporal Data Ontology Viewer

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2019English

Hair Data Model: A New Data Model for Spatio-Temporal Data Mining

2012English

Improved Searching for Spatial Features in Spatio-Temporal Data

2004English

Spatio-Temporal Interpolation of Ionospheric TEC Data

2011English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy