Amanote Research

Amanote Research

    RegisterSign In

Identification of Gene Signatures From RNA-seq Data Using Pareto-Optimal Cluster Algorithm

BMC Systems Biology - United Kingdom
doi 10.1186/s12918-018-0650-2
Full Text
Open PDF
Abstract

Available in full text

Categories
Molecular BiologyApplied MathematicsStructural BiologySimulationComputer Science ApplicationsModeling
Date

December 1, 2018

Authors
Saurav MallikZhongming Zhao
Publisher

Springer Science and Business Media LLC


Related search

Biomarker Identification From RNA-Seq Data Using a Robust Statistical Approach

Bioinformation
2018English

Comparative Studies of Differential Gene Calling Using RNA-Seq Data

BMC Bioinformatics
BiochemistryApplied MathematicsComputer Science ApplicationsStructural BiologyMolecular Biology
2013English

omniCLIP: Probabilistic Identification of Protein-Rna Interactions From CLIP-seq Data

Genome Biology
2018English

Identification of Differentially Expressed snoRNAs in Ovarian Cancer From RNA-Seq Data

Canadian Journal of Biotechnology
2017English

Multiobjective Optimal VAR Dispatch Using Strength Pareto Evolutionary Algorithm

English

Optimal Parameter Identification of Synthetic Gene Networks Using Harmony Search Algorithm

PLoS ONE
Multidisciplinary
2019English

Disease Biomarker Query From RNA-Seq Data

Cancer Informatics
Cancer ResearchOncology
2014English

A Hybrid Clustering Algorithm for Identifying Cell Types From Single-Cell RNA-Seq Data

Genes
Genetics
2019English

Identification of Serum microRNA Biomarkers for Tuberculosis Using RNA-seq

PLoS ONE
Multidisciplinary
2014English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy