Amanote Research

Amanote Research

    RegisterSign In

Approximation by P-Adic Lie Groups

Glasgow Mathematical Journal - United Kingdom
doi 10.1017/s0017089502020049
Full Text
Open PDF
Abstract

Available in full text

Categories
Mathematics
Date

May 1, 2002

Authors
Helge Glöckner
Publisher

Cambridge University Press (CUP)


Related search

A Canonical Dimension Estimate for Non-Split Semisimple $P$-Adic Lie Groups

Representation Theory
Mathematics
2016English

Exponential Generation and Largeness for Compactp-Adic Lie Groups

Algebra and Number Theory
Number TheoryAlgebra
2010English

Speculations on the Mod P Representation Theory of P-Adic Groups

Annales de la faculté des sciences de Toulouse Mathématiques
2016English

Local P-Sidon Sets for Lie Groups

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1978English

Asymptotics and Local Constancy of Characters of P-Adic Groups

Simons Symposia
2016English

Cuspidal ℓ \Ell -Modular Representations of P-Adic Classical Groups

Journal für die Reine und Angewandte Mathematik
MathematicsApplied Mathematics
2019English

The Weierstrass-Stone Approximation Theorem for P-Adic C^n-Functions

Annales mathématiques Blaise Pascal
1994English

Some Model Theory and Topological Dynamics of $P$-Adic Algebraic Groups

Fundamenta Mathematicae
Number TheoryAlgebra
2019English

P-Adic Superstrings

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
High Energy PhysicsNuclear
1988English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy