Amanote Research

Amanote Research

    RegisterSign In

Parameter Estimation Using Least Square Method for MIMO Takagi-Sugeno Neuro-Fuzzy in Time Series Forecasting

Jurnal Teknik Elektro
doi 10.9744/jte.7.2.82-87
Full Text
Open PDF
Abstract

Available in full text

Date

January 25, 2008

Authors
Indar SugiartoSaravanakumar Natarajan
Publisher

Petra Christian University


Related search

State and Parameter Estimation for Time-Varying Systems: A Takagi-Sugeno Approach

IFAC Proceedings Volumes
2013English

Estimation of Streamflow Using Takagi-Sugeno Fuzzy Rule-Based Model

English

On-Line Identification of MIMO Evolving Takagi- Sugeno Fuzzy Models

English

Integrated Fault Estimation and Accommodation Design for Discrete-Time Takagi–Sugeno Fuzzy Systems With Actuator Faults

IEEE Transactions on Fuzzy Systems
ControlSystems EngineeringApplied MathematicsMathematicsComputational TheoryArtificial Intelligence
2011English

Robust Fault Tolerant Control Framework Using Uncertain Takagi-Sugeno Fuzzy Models

Fuzzy Modeling and Control: Theory and Applications
2014English

Parameter Estimation Using Chaotic Time Series

Tellus A: Dynamic Meteorology and Oceanography
2005English

Weighted Least Square Method and Associated Time Series Data Problems

Global Journal of Pure and Applied Sciences
2001English

An Improved Adaptive Neuro Fuzzy Inference for the Step Forward Forecasting of Time Series

Journal of Advanced Computing
2013English

Time Scale in Least Square Method

Abstract and Applied Analysis
Applied MathematicsAnalysis
2014English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy