Amanote Research

Amanote Research

    RegisterSign In

Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference

SSRN Electronic Journal
doi 10.2139/ssrn.1296848
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2008

Authors
Juan Francisco Rubio-RamirezDaniel F. WaggonerTao A. Zha
Publisher

Elsevier BV


Related search

A Topological View on the Identification of Structural Vector Autoregressions

Economics Letters
EconomicsFinanceEconometrics
2016English

Exogenous Uncertainty and the Identification of Structural Vector Autoregressions With External Instruments

Journal of Applied Econometrics
EconomicsEconometricsSocial Sciences
2019English

Structural Approaches to Vector Autoregressions

1992English

Structural Interpretation of Vector Autoregressions With Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks

American Economic Review
EconomicsEconometrics
2019English

Sign Restrictions in Structural Vector Autoregressions: A Critical Review

Journal of Economic Literature
EconomicsEconometrics
2011English

Estimating Overidentified, Nonrecursive, Time-Varying Coefficients Structural Vector Autoregressions

Quantitative Economics
EconomicsEconometrics
2015English

Prior Selection for Vector Autoregressions

2012English

Spatial Vector Autoregressions

Spatial Economic Analysis
DevelopmentPlanetary SciencesFinanceProbabilityUncertaintyEconomicsPlanningStatisticsEarthEconometricsGeography
2007English

Implementing Bayesian Vector Autoregressions

1988English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy