Amanote Research

Amanote Research

    RegisterSign In

Polynomial Approximations to Finitely Oscillating Functions

Mathematics of Computation - United States
doi 10.1090/s0025-5718-1961-0123865-3
Full Text
Open PDF
Abstract

Available in full text

Categories
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
Date

May 1, 1961

Authors
William J. Kammerer
Publisher

American Mathematical Society (AMS)


Related search

Polynomial Approximations to Bessel Functions

IEEE Transactions on Antennas and Propagation
Electronic EngineeringElectricalCondensed Matter Physics
2003English

Approximations to Kelvin Functions

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
1963English

Rational Approximations to Generalized Hypergeometric Functions

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
1965English

Finitely Generated Submodules of Differentiable Functions

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1972English

Uniform Approximations to a Class of Bessel Functions

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1950English

Non-Oscillating Paley–Wiener Functions

Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
2001English

Learning Sparse Polynomial Functions

2013English

Optimization of Polynomial Functions

Canadian Mathematical Bulletin
Mathematics
2003English

Finitely Generated Submodules of Differentiable Functions. II

Bulletin of the American Mathematical Society
1973English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy