Amanote Research

Amanote Research

    RegisterSign In

On Semiconvexity Properties of Rotationally Invariant Functions in Two Dimensions

Czechoslovak Mathematical Journal - United States
doi 10.1007/s10587-004-6408-6
Full Text
Open PDF
Abstract

Available in full text

Categories
Mathematics
Date

September 1, 2004

Authors
M. Šilhavý
Publisher

Institute of Mathematics, Czech Academy of Sciences


Related search

Rotationally Invariant Wavelet Shrinkage

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2003English

Invariant Linear Functions

Transactions of the American Mathematical Society
MathematicsApplied Mathematics
1956English

Smooth Functions in Star-Invariant Subspaces

Contemporary Mathematics
Mathematics
2006English

An Example on Composite Differentiable Functions in Infinite Dimensions

Bulletin of the Australian Mathematical Society
Mathematics
1989English

Smoothness of Invariant Density for Expanding Transformations in Higher Dimensions

Journal of Applied Mathematics and Stochastic Analysis
2000English

Invariant Distributions, Beurling Transforms and Tensor Tomography in Higher Dimensions

Mathematische Annalen
Mathematics
2015English

Magnetism of Iron and Nickel From Rotationally Invariant Hirsch-Fye Quantum Monte Carlo Calculations

Physical Review B
2013English

Translation-Invariant Cones of Functions on Semi-Simple Lie Groups

Bulletin of the American Mathematical Society
1965English

Poincare Invariant Quantum Mechancis Based on Euclidean Green Functions

2010English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy