Amanote Research

Amanote Research

    RegisterSign In

Clustering of Longitudinal Shape Data Sets Using Mixture of Separate or Branching Trajectories

Lecture Notes in Computer Science - Germany
doi 10.1007/978-3-030-32251-9_8
Full Text
Open PDF
Abstract

Available in full text

Categories
Computer ScienceTheoretical Computer Science
Date

January 1, 2019

Authors
Vianney DebavelaereAlexandre BôneStanley DurrlemanStéphanie Allassonnière
Publisher

Springer International Publishing


Related search

Clustering Multidimensional Trajectories Based on Shape and Velocity

2006English

Design of Earth-Mars Transfer Trajectories Using Evolution-Branching Technique

2003English

Reconstruction of Incomplete Data Sets or Images Using Direct Sampling

Mathematical Geosciences
EarthPlanetary SciencesMathematics
2010English

Hierarchical Clustering Using Level Sets

English

Life Course Trajectories of Systolic Blood Pressure Using Longitudinal Data From Eight UK Cohorts

PLoS Medicine
BiochemistryBiotechnologyMolecular BiologyCell BiologyMedicine
2011English

Shape Identification in Temporal Data Sets

2012English

Sets Which Separate Spheres

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1954English

A Semiparametric Mixture Regression Model for Longitudinal Data

Journal of Statistical Theory and Practice
StatisticsProbability
2017English

Avoidance Trajectories Using Reachable Sets and Parametric Sensitivity Analysis

IFIP Advances in Information and Communication Technology
Computer NetworksInformation SystemsManagementCommunications
2013English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy