Amanote Research

Amanote Research

    RegisterSign In

A Hierarchical Topic Modelling Approach for Tweet Clustering

Lecture Notes in Computer Science - Germany
doi 10.1007/978-3-319-67256-4_30
Full Text
Open PDF
Abstract

Available in full text

Categories
Computer ScienceTheoretical Computer Science
Date

January 1, 2017

Authors
Bo WangMaria LiakataArkaitz ZubiagaRob Procter
Publisher

Springer International Publishing


Related search

K Prototype Clustering With Efficient Summarization for Topic Evolutionary Tweet Stream Clustering

International Journal of Science and Research (IJSR)
2017English

A Hierarchical Immune-Inspired Approach for Text Clustering

2008English

A Segment-Based Approach to Clustering Multi-Topic Documents

Knowledge and Information Systems
Information SystemsHuman-Computer InteractionHardwareArchitectureArtificial IntelligenceSoftware
2012English

Discovering Users Topic of Interest From Tweet

International Journal of Computer Science and Information Technology
2018English

Automatic Generation of Ontologies: A Hierarchical Word Clustering Approach

IADIS INTERNATIONAL JOURNAL ON COMPUTER SCIENCE AND INFORMATION SYSTEMS
2018English

A New Approach to Image Retrieval With Hierarchical Color Clustering

IEEE Transactions on Circuits and Systems for Video Technology
Electronic EngineeringMedia TechnologyElectrical
1998English

A Knowledge-Based Topic Modeling Approach for Automatic Topic Labeling

International Journal of Advanced Computer Science and Applications
Computer Science
2017English

Hierarchical Clustering

English

Hierarchical Clustering

2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy