Amanote Research

Amanote Research

    RegisterSign In

An RKHS Approach to Robust Functional Linear Regression

Statistica Sinica - Taiwan
doi 10.5705/ss.202014.0063
Full Text
Open PDF
Abstract

Available in full text

Categories
UncertaintyStatisticsProbability
Date

January 1, 2016

Authors
Hyejin ShinSeokho Lee
Publisher

Institute of Statistical Science


Related search

An Inverse Problem Approach to Robust Regression

1999English

Or Forum—An Algorithmic Approach to Linear Regression

Operations Research
Management ScienceComputer Science ApplicationsOperations Research
2016English

Robust Regression for Functional Time Series Data

JOURNAL OF THE JAPAN STATISTICAL SOCIETY
2012English

Semi-Functional Partial Linear Quantile Regression

Statistics and Probability Letters
UncertaintyStatisticsProbability
2018English

A Note on Functional Linear Regression

Journal of Statistical Computation and Simulation
StatisticsProbabilityApplied MathematicsUncertaintySimulationModeling
2009English

Robust Inference for Generalized Linear Models With Application to Logistic Regression

Statistics and Probability Letters
UncertaintyStatisticsProbability
2001English

Wavelet-Based LASSO in Functional Linear Regression

Journal of Computational and Graphical Statistics
CombinatoricsUncertaintyStatisticsProbabilityDiscrete Mathematics
2012English

Efficient Algorithms and Lower Bounds for Robust Linear Regression

2019English

Local Linear Functional Regression Based on Weighted Distance-Based Regression

Functional and Operatorial Statistics
2008English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy