Amanote Research

Amanote Research

    RegisterSign In

On Some Subspaces of Banach Spaces Whose Duals Are $L\sb{1}$\ Spaces

Proceedings of the American Mathematical Society - United States
doi 10.1090/s0002-9939-1969-0246094-0
Full Text
Open PDF
Abstract

Available in full text

Categories
MathematicsApplied Mathematics
Date

February 1, 1969

Authors
M. Zippin
Publisher

American Mathematical Society (AMS)


Related search

On Spaces of Operators Whose Duals Are Isometric to L^1(μ)

Operators and Matrices
Number TheoryAnalysisAlgebra
2009English

Common Subspaces of $L\sb P$-Spaces

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1994English

Banach Lattice Structures on Separable $L\sb{p}$ Spaces

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1976English

Some Classes of Banach Spaces and Complemented Subspaces of Operators

Advances in Operator Theory
Number TheoryAnalysisAlgebra
2019English

$G\sb \Kappa$ Subspaces of Hyadic Spaces

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1988English

Examples of Separable Spaces Which Do Not Contain $L_{1}$ and Whose Duals Are Non-Separable

Studia Mathematica
Mathematics
1975English

Separable L-Embedded Banach Spaces Are Unique Preduals

Bulletin of the London Mathematical Society
Mathematics
2007English

Some Remarks on Regular Banach Spaces

Glasgow Mathematical Journal
Mathematics
1996English

Differentiable Bundles of Subspaces and Operators in Banach Spaces

Studia Mathematica
Mathematics
1991English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy