Amanote Research

Amanote Research

    RegisterSign In

Machine Learning Predicts New Anti-Crispr Proteins

doi 10.1101/854950
Full Text
Open PDF
Abstract

Available in full text

Date

November 29, 2019

Authors
Simon EitzingerAmina AsifKyle E. WattersAnthony T. IavaroneGavin J. KnottJennifer A. DoudnaFayyaz ul Amir Afsar Minhas
Publisher

Cold Spring Harbor Laboratory


Related search

Microbiology: A Wealth of Anti-Crispr Proteins

Nature
Multidisciplinary
2016English

Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-Crispr Proteins

Molecular Cell
Cell BiologyMolecular Biology
2019English

CRISPR-based COVID-19 Surveillance Using a Genomically-Comprehensive Machine Learning Approach

2020English

A Molecular Arms Race: New Insights Into Anti-Crispr Mechanisms

Nature Structural and Molecular Biology
Structural BiologyMolecular Biology
2016English

Functional Discrimination of Membrane Proteins Using Machine Learning Techniques

BMC Bioinformatics
BiochemistryApplied MathematicsComputer Science ApplicationsStructural BiologyMolecular Biology
2008English

Finding New Perovskite Halides via Machine Learning

Frontiers in Materials
Materials Science
2016English

New Machine Learning Developments in ROOT/TMVA

EPJ Web of Conferences
AstronomyPhysics
2019English

Temperature Prediction of Anti-Frost Layer Using Machine Learning Techniques

Journal of the Korean Society of Hazard Mitigation
2020English

Machine Learning Predicts the Yeast Metabolome From the Quantitative Proteome of Kinase Knockouts

Cell Systems
Forensic MedicinePathologyCell BiologyHistology
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy