Amanote Research

Amanote Research

    RegisterSign In

Polynomials Defined by Three-Term Recursion Relations and Satisfying a Second Recursion Relation: Connection With Discrete Integrability, Remarkable (Often Diophantine) Factorizations

Journal of Nonlinear Mathematical Physics - United Kingdom
doi 10.1142/s1402925111001416
Full Text
Open PDF
Abstract

Available in full text

Categories
Nonlinear PhysicsMathematical PhysicsStatistical
Date

January 1, 2011

Authors
M. BRUSCHIF. CALOGEROR. DROGHEI
Publisher

Informa UK Limited


Related search

Recursion and Double Recursion

Bulletin of the American Mathematical Society
1948English

A Simple Recursion for Power Sum Polynomials

Elemente der Mathematik
2014English

Recursion Relation for Boundary Contribution

Journal of High Energy Physics
High Energy PhysicsNuclear
2015English

Polynomials Defined by Generating Relations

Transactions of the American Mathematical Society
MathematicsApplied Mathematics
1972English

Avoiding Recursion

1992English

Iteration and Recursion

Proceedings of the National Academy of Sciences of the United States of America
Multidisciplinary
1968English

Explore a New Way to Convert a Recursion Algorithm Into a Non-Recursion Algorithm

English

New Properties of Large-C Conformal Blocks From Recursion Relation

Journal of High Energy Physics
High Energy PhysicsNuclear
2018English

Addendum to "Some Polynomials Defined by Generating Relations"

Transactions of the American Mathematical Society
MathematicsApplied Mathematics
1977English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy