Amanote Research

Amanote Research

    RegisterSign In

Inferring Network Connectivity Using Kinetic Ising Models

BMC Neuroscience - United Kingdom
doi 10.1186/1471-2202-11-s1-p51
Full Text
Open PDF
Abstract

Available in full text

Categories
NeuroscienceCellularMolecular Neuroscience
Date

July 1, 2010

Authors
John A HertzYasser RoudiAndreas ThorningJoanna TyrchaErik AurellHong-Li Zeng
Publisher

Springer Science and Business Media LLC


Related search

Probabilistic Boolean Network for Inferring Brain Connectivity Using FMRI Data

2008English

Inferring Neuronal Network Functional Connectivity With Directed Information

Journal of Neurophysiology
NeurosciencePhysiology
2017English

Inferring Neuronal Functional Connectivity Using Dynamic Bayesian Networks

BMC Neuroscience
NeuroscienceCellularMolecular Neuroscience
2008English

Inferring Effective Computational Connectivity Using Incrementally Conditioned Multivariate Transfer Entropy

BMC Neuroscience
NeuroscienceCellularMolecular Neuroscience
2013English

Inferring Neural Connectivity From Multiple Spike Trains

BMC Neuroscience
NeuroscienceCellularMolecular Neuroscience
2007English

Equivalence Transformations Among Ising Models

Journal of Modern Physics
2015English

Thermal Conductivity of a Kinetic Ising Model

Physical Review B
1988English

Inferring Synaptic Connectivity From Spatio-Temporal Spike Patterns

Frontiers in Computational Neuroscience
NeuroscienceCellularMolecular Neuroscience
2011English

Inferring Applications at the Network Layer Using Collective Traffic Statistics

2010English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy