Amanote Research

Amanote Research

    RegisterSign In

The Fourier Expansion of Epstein's Zeta Function for Totally Real Algebraic Number Fields and Some Consequences for Dedekind's Zeta Function

Acta Arithmetica - Poland
doi 10.4064/aa-30-2-187-197
Full Text
Open PDF
Abstract

Available in full text

Categories
Number TheoryAlgebra
Date

January 1, 1976

Authors
A. Terras
Publisher

Institute of Mathematics, Polish Academy of Sciences


Related search

Prime Number Theory and the Riemann Zeta-Function

2005English

Chen's Theorem in Totally Real Algebraic Number Fields

Acta Arithmetica
Number TheoryAlgebra
1991English

Some Identities and Inequalities Related to the Riemann Zeta Function

Moroccan Journal of Pure and Applied Analysis
2019English

Rapidly Convergent Series for the Weierstrass Zeta-Function and the Kronecker Function

Mathematical Research Letters
Mathematics
2000English

On the Riemann Zeta Function

Bulletin of the American Mathematical Society
1923English

Pseudomoments of the Riemann Zeta Function

Bulletin of the London Mathematical Society
Mathematics
2018English

Expansion Formulas for an Extended Hurwitz-Lerch Zeta Function Obtained via Fractional Calculus

Advances in Difference Equations
Applied MathematicsNumber TheoryAnalysisAlgebra
2014English

Note on the Hurwitz Zeta-Function

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1951English

Rational Approximations to the Zeta Function

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
MathematicsEngineeringAstronomyPhysics
2019English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy