Amanote Research

Amanote Research

    RegisterSign In

Algebraic Shift Equivalence and Primitive Matrices

Transactions of the American Mathematical Society - United States
doi 10.2307/2154341
Full Text
Open PDF
Abstract

Available in full text

Categories
MathematicsApplied Mathematics
Date

March 1, 1993

Authors
Mike BoyleDavid Handelman
Publisher

JSTOR


Related search

Strong Shift Equivalence Theory and the Shift Equivalence Problem

Bulletin of the American Mathematical Society
MathematicsApplied Mathematics
1999English

Equivalence of Algebraic Extensions

Bulletin of the American Mathematical Society
1937English

Equivalence of Hadamard Matrices

Israel Journal of Mathematics
Mathematics
1969English

Algebraic Shift Register Sequences

Choice Reviews Online
2013English

Algebraic Shift Register Sequences

2009English

Algebraic Characteristic Classes for Idempotent Matrices

Publicacions Matematiques
Mathematics
1992English

On Primitive Elements in Differentially Algebraic Extension Fields

Transactions of the American Mathematical Society
MathematicsApplied Mathematics
1968English

Nonsymmetric Algebraic Riccati Equations and Hamiltonian-Like Matrices

SIAM Journal on Matrix Analysis and Applications
Analysis
1998English

An Equivalence-Preserving Transformation of Shift Registers

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2014English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy