Amanote Research

Amanote Research

    RegisterSign In

Thomas Precession and the Bargmann-Michel-Telegdi Equation

Foundations of Physics - United States
doi 10.1007/s10701-011-9579-7
Full Text
Open PDF
Abstract

Available in full text

Categories
AstronomyPhysics
Date

July 6, 2011

Authors
Krzysztof Rȩbilas
Publisher

Springer Science and Business Media LLC


Related search

The Thomas Precession Gives Ge−1, Not Ge/2

American Journal of Physics
AstronomyPhysics
1987English

Joséphine Michel, From the Heat Equation

Museum and Society
2019English

Precession and Recession of the Rock'n'roller

Journal of Physics A: Mathematical and Theoretical
StatisticsProbabilityNonlinear PhysicsSimulationMathematical PhysicsStatisticalModelingAstronomyPhysics
2009English

Bargmann and Barut-Girardello Models for the Racah Algebra

Journal of Mathematical Physics
Nonlinear PhysicsMathematical PhysicsStatistical
2019English

An Efficient Numerical Method for Solving Nonlinear Thomas-Fermi Equation

Acta Universitatis Sapientiae, Mathematica
Mathematics
2018English

The Segal-Bargmann Transform on Classical Matrix Lie Groups

Journal of Functional Analysis
Analysis
2020English

Structure of the 12j and 15j Coefficients in the Bargmann Approach

Journal of Mathematical Physics
Nonlinear PhysicsMathematical PhysicsStatistical
1974English

Bargmann Invariants and Geometric Phases: A Generalized Connection

Physical Review A
1999English

Spectral Approximation for Segal-Bargmann Space Toeplitz Operators

Banach Center Publications
1997English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy