Amanote Research

Amanote Research

    RegisterSign In

The Schoenberg - Lévy Kernel and Relationships Among Fractional Brownian Motion, Bifractional Brownian Motion, and Others

Теория вероятностей и ее применения
doi 10.4213/tvp4477
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2012

Authors
Chunsheng MaChunsheng Ma
Publisher

Steklov Mathematical Institute


Related search

Super Fractional Brownian Motion, Fractional Super Brownian Motion and Related Self-Similar (Super) Processes

1994English

Statistical Inference in Fractional Brownian Motion

Journal of Statistical Sciences
2017English

A Series Expansion of Fractional Brownian Motion

Probability Theory and Related Fields
UncertaintyStatisticsProbabilityAnalysis
2004English

Brownian and Quantum Motion

Nature
Multidisciplinary
1984English

A Fractional Linear System View of the Fractional Brownian Motion

Nonlinear Dynamics
ControlSystems EngineeringMechanical EngineeringElectronic EngineeringApplied MathematicsElectricalOcean EngineeringAerospace Engineering
2004English

Random Walks and Brownian Motion

2012English

Definition, Properties and Wavelet Analysis of Multiscale Fractional Brownian Motion

Fractals
GeometryApplied MathematicsMultidisciplinarySimulationModelingTopology
2007English

Bernstein Polynomials and Brownian Motion

American Mathematical Monthly
Mathematics
2006English

Alternative Frequency and Time Domain Versions of Fractional Brownian Motion

Econometric Theory
EconomicsEconometricsSocial Sciences
2007English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy