Amanote Research

Amanote Research

    RegisterSign In

Weak Solutions to a Monge-Ampère Type Equation on Kähler Surfaces

doi 10.17077/etd.qagw9edr
Full Text
Open PDF
Abstract

Available in full text

Date

Unknown

Authors
Arvind Satya Rao
Publisher

The University of Iowa


Related search

Regularity of Weak Solutions of a Complex Monge–Ampère Equation

Analysis and PDE
Applied MathematicsNumerical AnalysisAnalysis
2011English

Regularity of Solutions to the Quaternionic Monge–Ampère Equation

Journal of Geometric Analysis
GeometryTopology
2020English

On Weak Solutions to the Linear Boltzmann Equation With Inelastic Coulomb Collisions

2011English

On Periodic Solutions of a Neutral Type Equation

Periodica Mathematica Hungarica
Mathematics
1979English

Weak Solutions of the Porous Medium Equation

Transactions of the American Mathematical Society
MathematicsApplied Mathematics
1993English

Type II Ancient Solutions to the Ricci Flow on Surfaces

Communications in Analysis and Geometry
StatisticsProbabilityGeometryUncertaintyAnalysisTopology
2007English

Nonexistence of Global Weak Solutions of Nonlinear Keldysh Type Equation With One Derivative Term

Advances in Mathematical Physics
Applied MathematicsAstronomyPhysics
2018English

The Complex Monge-Ampère Equation on Compact Hermitian Manifolds

Journal of the American Mathematical Society
MathematicsApplied Mathematics
2010English

A Note on Complex Monge-Ampère Equation in Stein Manifolds

Asian Journal of Mathematics
MathematicsApplied Mathematics
2008English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy