Amanote Research

Amanote Research

    RegisterSign In

Sparsified Cholesky and Multigrid Solvers for Connection Laplacians

doi 10.1145/2897518.2897640
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2016

Authors
Rasmus KyngYin Tat LeeRichard PengSushant SachdevaDaniel A. Spielman
Publisher

ACM Press


Related search

Final Report:B595949 - Fast Solvers for Discrete Hodge Laplacians

2013English

Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

2015English

S-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid

2014English

Reconfigurable Hardware Generation of Multigrid Solvers With Conjugate Gradient Coarse-Grid Solution

Parallel Processing Letters
HardwareTheoretical Computer ScienceArchitectureSoftware
2018English

Improved Rigorous Multiplicative Perturbation Bounds for the Generalized Cholesky Factorization and the Cholesky-Like Factorization

Mathematical Inequalities and Applications
MathematicsApplied Mathematics
2019English

Eigenvalues of Collapsing Domains and Drift Laplacians

Mathematical Research Letters
Mathematics
2012English

Hardy and Rellich Inequalities for Anisotropic P-Sub-Laplacians

Banach Journal of Mathematical Analysis
Number TheoryAnalysisAlgebra
2020English

Improved Backward Error Bounds for LU and Cholesky Factorizations

SIAM Journal on Matrix Analysis and Applications
Analysis
2014English

Generalized Laplacians and Multiple Trigonometric Series

Transactions of the American Mathematical Society
MathematicsApplied Mathematics
1973English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy